Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Agric Food Chem ; 72(1): 339-350, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38150707

RESUMO

Atopic dermatitis (AD) is a complex inflammatory skin disease induced by multiple factors. AD can also cause intestinal inflammation and disorders of the gut microbiota. Ginseng is a kind of edible and medicinal plant; its main active components are ginsenosides. Ginsenosides have a variety of anti-inflammatory effects and regulate the gut microbiota; however, their role in AD and the underlying mechanisms are unclear. In this study, we found that intragastric administration of ginsenoside F2 improved AD-like skin symptoms and reduced inflammatory cell infiltration, serum immunoglobulin E levels, and mRNA expression of inflammatory cytokines in AD mice. 16s rRNA sequencing analysis showed that ginsenoside F2 altered the intestinal microbiota structure and enriched the short-chain fatty acid-producing microbiota in AD mice. Metabolomic analysis revealed that ginsenoside F2 significantly increased the propionic acid (Pa) content of feces and serum in AD mice, which was positively correlated with significant enrichment of Parabacteroides goldsteinii and Lactobacillus plantarum in the intestines. Pa inhibits inflammatory responses in the gut and skin of AD mice through the G-protein-coupled receptor43/NF-κB pathway, thereby improving skin AD symptoms. These results revealed, for the first time, the mechanism by which ginsenoside F2 improves AD through the Pa (a metabolite of intestinal microbiota)-gut-skin axis.


Assuntos
Dermatite Atópica , Microbioma Gastrointestinal , Ginsenosídeos , Camundongos , Animais , Dermatite Atópica/tratamento farmacológico , Ginsenosídeos/farmacologia , RNA Ribossômico 16S
2.
Food Funct ; 14(10): 4696-4705, 2023 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-37186251

RESUMO

Obesity is a global health problem strongly linked to gut microbes and their metabolites. In this study, ginsenoside Rg1 (Rg1) reduced lipid droplet size and hepatic lipid accumulation by activating uncoupling protein 1 expression in brown adipose tissue (BAT), which in turn inhibited high-fat diet (HFD)-induced weight gain in mice. Furthermore, the intestinal flora of mice was altered, the abundance of Lachnoclostridium, Streptococcus, Lactococcus, Enterococcus and Erysipelatoclostridium was upregulated, and the concentrations of fecal bile acids were altered, with cholic acid and taurocholic acid concentrations being significantly increased. In addition, the beneficial effects of Rg1 were eliminated in mice treated with a combination of antibiotics. In conclusion, these results suggest that Rg1 activates BAT to counteract obesity by regulating gut microbes and bile acid composition in HFD-fed mice.


Assuntos
Tecido Adiposo Marrom , Microbioma Gastrointestinal , Animais , Camundongos , Tecido Adiposo Marrom/metabolismo , Dieta Hiperlipídica/efeitos adversos , Ácidos e Sais Biliares/metabolismo , Obesidade/metabolismo , Camundongos Endogâmicos C57BL , Tecido Adiposo/metabolismo
3.
Materials (Basel) ; 16(2)2023 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-36676477

RESUMO

Several composite materials are being investigated as reinforcement fillers for surgery simulations. This study presents an artificial composite material with properties similar to those of the human bone, which may be used in surgery simulations. Moreover, considering the potential toxicity of debris generated during sawing, a safe epoxy-based composite material was synthesized using cellulose nanocrystals (CNCs) and bioceramics (i.e., hydroxyapatite, Yttria stabilized zirconia oxide, Zirconia oxide), which were used to mimic the stiffness of human bone. To examine the change in mechanical properties according to the composition, 1, 3, and 5 wt% of CNCs were mixed with 5 wt% of the bioceramics. When CNCs were added at 1 wt%, there was a confirmed change in the non-linear stiffness and ductility. The CNC-added specimen fractured when forming a nano-network around the local CNCs during curing. In contrast, the specimen without CNCs was more densely structured, and combined to form a network of all specimens such that a plastic region could exist. Thus, this study successfully manufactured a material that could mimic longitudinal and transverse characteristics similar to those of real human bone, as well as exhibit mechanical properties such as strength and stiffness. Bioceramics are harmless to the human body, and can be used by controlling the added quantity of CNCs. We expect that this material will be suitable for use in surgery simulations.

4.
Anim Biotechnol ; 34(7): 2150-2158, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35658834

RESUMO

Myostatin (MSTN), a negative regulator of skeletal muscle mass, is not well known in extraocular muscles (EOMs). EOMs are specialized skeletal muscles. Hence, in this study, the effect of MSTN on the superior rectus (SR) and superior oblique (SO) of 2-month-old MSTN knockout (MSTN-/-) and wild-type (WT) pigs of the same genotype was investigated. SR (P < 0.01) and SO (P < 0.001) fiber cross-sectional areas of MSTN-/- pigs were significantly larger than those of WT pigs. Compared with WT pigs, MSTN-/- SO displayed a decrease in type I fibers (WT: 27.24%, MSTN-/-: 10.32%, P < 0.001). Type IIb fibers were higher in MSTN-/- pigs than in WT pigs (WT: 30.38%, MSTN-/-: 62.24%, P < 0.001). The trend in SR was the same as that in SO, although the trend in SO was greater than that in SR. The expression of myogenic differentiation factor (MyoD) and myogenic (MyoG) showed a significant increase in MSTN-/- SO (about 2.5-fold and 2-fold, respectively at the gene expression level, about 1.5-fold at the protein level) compared with WT pigs. MSTN plays an important role in the development of EOMs and regulates the muscle fiber type by modulating the gene expression of MyoD and MyoG in pigs.


Assuntos
Miostatina , Músculos Oculomotores , Animais , Suínos/genética , Músculos Oculomotores/metabolismo , Técnicas de Inativação de Genes , Miostatina/genética , Miostatina/metabolismo , Músculo Esquelético/metabolismo , Fibras Musculares Esqueléticas/metabolismo
5.
Front Microbiol ; 13: 1091712, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36532435

RESUMO

In this study, we aimed to characterize the anti-type 2 diabetes (T2D) effects of Gastrodia elata Blume extract (GEBE) and determine whether these are mediated through modification of the gut microbiota and bile acids. Mice were fed a high-fat diet (HFD), with or without GEBE, and we found that GEBE significantly ameliorated the HFD-induced hyperglycemia, insulin resistance, and inflammation by upregulating glucose transporter 4 (GLUT4) and inhibiting the toll-like receptor 4-nuclear factor kappa-B signaling pathway in white adipose tissue (WAT). In addition, we found that GEBE increased the abundance of Faecalibaculum and Lactobacillus, and altered the serum bile acid concentrations, with a significant increase in deoxycholic acid. The administration of combined antibiotics to mice to eliminate their intestinal microbiota caused a loss of the protective effects of GEBE. Taken together, these findings suggest that GEBE ameliorates T2D by increasing GLUT4 expression in WAT, remodeling the gut microbiota, and modifying serum bile acid concentrations.

6.
Res Vet Sci ; 152: 228-235, 2022 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-36027840

RESUMO

Current studies on myostatin (MSTN), a well-known negative regulator of skeletal muscle, studies mainly focus on the its effects on skeletal muscle.However, its effects on smooth muscle are less studied, especially in the uterine horns. To identify the role of MSTN in uterine horn smooth muscle, this study used 6-8-month-old homozygous MSTN mutant (MSTN-/-) gilts in anoestrum as animal models. Histochemical and immunofluorescence staining, western blotting, and RT-qPCR were performed. The results showed that the uteri of the MSTN-/- gilts were morphologically normal, and the uterine horn smooth muscle content was increased (MSTN-/-: 75.19%, Wild type: 51.52%, P < 0.01). In vivo immunofluorescence staining showed that the expression of the uterine horn smooth muscle-specific marker proteins, namely α-smooth muscle actin (ACTA2) and calponin, increased after MSTN knockout (1.41- and 1.21-fold, respectively, P < 0.05). Increased gene expression was also seen in MSTN-/- gilts in vivo for ACTA2 (approximately 2-fold), smooth muscle myosin heavy chain (7.14-fold), myocardin (9.32-fold), and serum response factor (2.17-fold). Protein expression of smooth muscle-specific markers was increased (1.51-fold for ACTA2, 1.57-fold for calponin, P<0.05). MSTN knockout promoted proliferation of the smooth muscle cell and the gene expression of c-kit, a peristaltic marker (2.43-fold, P < 0.05). The results of the in vitro experiments were consistent with those of the in vivo experiments. The present study indicates that MSTN knockout can increase the smooth muscle content of uterine horns, thus providing potential therapeutic targets for pregnancy disorders caused by increased smooth muscle content.


Assuntos
Músculo Esquelético , Miostatina , Animais , Suínos , Feminino , Miostatina/genética , Miostatina/metabolismo , Músculo Esquelético/fisiologia , Sus scrofa , Músculo Liso , Útero
7.
Transgenic Res ; 31(3): 341-349, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35570234

RESUMO

Myostatin (MSTN) is a member of the transforming growth factor-ß superfamily that inhibits skeletal muscle growth and development. The esophagus is composed of skeletal muscle and smooth muscle, but the effect of MSTN on esophagus striated muscle (ESM) is unknown. The present study investigated the role of MSTN in ESM using MSTN mutant pigs through histological, gene and protein expression analysis in ESM of MSTN knockout (MSTN-/-) pigs and their wild type (WT) littermates. Hematoxylin-eosin staining showed that the fiber cross-sectional areas in ESM of MSTN-/- pigs were significantly larger than WT pigs (P < 0.05). Immunofluorescence staining showed that the percentage of type I muscle fibers in MSTN-/- pigs were significantly lower than WT pigs (P < 0.01) and type IIA muscle fibers in MSTN-/- pigs were significantly higher than WT pigs (21% higher, P < 0.01). However, type IIB muscle fibers were not detected in the ESM of MSTN-/- or WT pigs indicating that muscle fiber types in pig ESM was composed of type I and IIA. The mRNA levels of myogenic regulatory factors (MRFs) including myogenic differentiation (MyoD), myogenin (MyoG), myogenic factor 5 (Myf5) and myogenic regulatory factor 4 (MRF4) in ESM of MSTN-/- pigs showed a significant increase (P < 0.05 at least) when compared to WT pigs while mRNA level of myocyte enhancer factor 2C (MEF2C) displayed a decrease (P < 0.001). Protein expression of myosin heavy chain I (MHC-I) in MSTN-/- ESM was decreased and myosin heavy chain IIA (MHC-IIA) was increased (P < 0.01, P < 0.05). These findings indicate that MSTN plays an important role in esophageal striated muscle development and regulates muscle fiber types.


Assuntos
Cadeias Pesadas de Miosina , Miostatina , Animais , Esôfago/metabolismo , Hipertrofia/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/metabolismo , Cadeias Pesadas de Miosina/genética , Cadeias Pesadas de Miosina/metabolismo , Miostatina/genética , RNA Mensageiro , Suínos/genética
8.
Int J Biochem Cell Biol ; 147: 106212, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35439649

RESUMO

Loss of muscle mass can lead to diseases such as sarcopenia, diabetes, and obesity, which can worsen the quality of life and increase the incidence of disease. Therefore, understanding the mechanism underlying skeletal muscle differentiation is vital to prevent muscle diseases. We previously found that microRNA-320 (miR-320) is highly expressed in the lean muscle-type pigs, but its regulatory role in myogenesis remains unclear. The bioinformatics prediction indicated that miR-320 could bind to the 3 'untranslated region of growth factor receptor-bound protein-2 (Grb2). We hypothesized that miR-320 targets Grb2 to regulate myoblasts differentiation. To verify this, we transfected miR-320 mimic and inhibitor into C2C12 myoblasts to assess the role of miR-320 during myoblasts differentiation. We used real-time qPCR, luciferase reporter assays, and western blotting to confirm that miR-320 directly targets Grb2 to promote myoblasts differentiation. Moreover, by using a dexamethasone-induced atrophic model of myotubes, we discovered that miR-320 promotes the repair of damaged myotubes. Our findings expand understanding of miRNAs and genes related to regulating skeletal muscle differentiation, and provide insight into underlying therapeutic strategies for muscle diseases.


Assuntos
MicroRNAs , Qualidade de Vida , Regiões 3' não Traduzidas , Animais , Atrofia/metabolismo , Diferenciação Celular/genética , Proliferação de Células/genética , Proteína Adaptadora GRB2/genética , Proteína Adaptadora GRB2/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Desenvolvimento Muscular/genética , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/metabolismo , Suínos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...